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1. Eratosthenes Sieve

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …
List the natural numbers (up to some bound N).  

Mark ‘1’ as the unit and repeat these two steps:
E1.  Mark the smallest unmarked number as the next prime p, and
E2.  Cross off all multiples of p from the list

Until every number on the list has been marked as a prime or crossed off.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …X X X XX XX X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …X X X XX XX X X X X X X X XX X XX X

This is the stage of Eratosthenes sieve for p=2.

This is the stage of Eratosthenes sieve for p=3.

Exercises:  
1. Perform Eratosthenes sieve for the bound N=100.
2. In the stage of the sieve for p, show that p2 is the smallest multiple 

of p to be crossed off in step E2. 

Confirmed primes Remaining candidate primes
Unit

1
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2. Cycles of gaps G(p#)
At each stage of Eratosthenes sieve, there is a corresponding cycle of gaps G(p#) 
among the remaining candidate primes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …X X X XX XX X X X X X X X X
For p=2, the cycle G(2#) = 2.

The notation p# denotes the primorial of p.  This is the product of all the prime 
numbers up to and including p.  

2# = 2
3# = 6
5# = 30
7# = 210

That is, after removing all the multiples of 2 (all the even numbers), the 
remaining candidate primes (the odd numbers) are separated by a gap of g=2. 
The length of this cycle G(2#) is 1 gap and its span (the sum of its gaps) is 2.
The first gap in the cycle goes from the unit 1 to the next candidate prime 3, 
since the number 2 has been confirmed as a prime number.

2 2 2 2 2 2 2 22 2 2 2 2 2 22

2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …X X X XX XX X X X X X X X XX X XX X

For p=3, the cycle G(3#) = 4 2.

The length of this cycle G(3#) is 2 gaps and its span (the sum of its gaps) is 6.

At the stage of Eratosthenes sieve for p=3, the remaining candidate primes 
are separated by alternating gaps of g=4 and g=2. 
The first gap in the cycle goes from the unit 1 to the next candidate prime 5, 
passing over the confirmed primes.

4 2 4 4 22 4 2 4 2 4

For p=5, the cycle G(5#) = 6 4 2 4 2 4 6 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 …X X X XX XX X X X X X X X XX X XX X
6 4 4 22 4 6 2 6

X

The length of this cycle G(5#) is 8 gaps and its span (the sum of its gaps) is 30.

Exercise:  show that the span of the cycle G(p#) is p#.

3
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3. Recursion across the cycles of gaps G(p#)

There is a 3-step recursion that produces the next cycle of gaps from the current 
one.

G(pk#)  ⟶  G(pk+1#)

Recursion.  For pk we have the cycle of gaps G(pk#) = g1 g2 g3 … gN

R1.  The next prime pk+1 = g1+1
R2.  Concatenate pk+1 copies of G(pk#)
R3.  Add together the gaps g1+g2 and thereafter add adjacent gaps at the 

running sums indicated by the elementwise product pk+1*G(pk#)

The discrete dynamic system consists of the cycles of gaps under this recursion

G(p0#)  ⟶ G(p1#)  ⟶ … ⟶ G(pk#)  ⟶  G(pk+1#) ⟶ …

4
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Recursion from  G(pk#)  ⟶  G(pk+1#)
For pk we have the cycle of gaps G(pk#) = g1 g2 g3 … gN

R1.  The next prime pk+1 = g1+1
R2.  Concatenate pk+1 copies of G(pk#)
R3.  Add together the gaps g1+g2 and thereafter add adjacent gaps at the 

running sums indicated by the elementwise product pk+1*G(pk#)

As an example, let’s use the recursion to produce G(5#) from G(3#).

R1.  The next prime pk+1 = g1+1 = 4+1 = 5
R2.  Concatenate 5 copies of G(3#)
R3.  Add together adjacent gaps using the 

elementwise product 5*G(3#)

(Note that the last running sum 10 wraps around the 
end of the cycle, back to the first addition.)

5

In step R3, we call those additions of adjacent gaps fusions.  
 Each fusion corresponds to crossing a multiple of pk+1 off the list of candidate primes.  

When we eliminate a candidate prime, we form a new gap that is the sum of the 
gaps on either side of this former candidate.

pk=3 and G(3#) = 4 2

4 2 4 2 4 2 4 2 4 2+               +
5*G(3#) =      20            10

pk+1= 4+1 = 5

G(5#) = 6 4 2 4 2 4 6 2

R1

R2
R3

https://www.primegaps.info/
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As a second example, let’s produce G(7#) from G(5#) by recursion.

Exercises: 1. To become familiar with the recursion, create G(5#) and G(7#) by hand

 2. Show that the length of G(p#) is  f(p#) = Pq ≤ p(q-1). 

The cycle of gaps G(7#) has length 48 gaps and span 210.

(Remember - the last running sum 
14 wraps around the end of the 
cycle, back to the first fusion.)

6

pk=5 and G(5#) = 6 4 2 4 2 4 6 2

6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2+ + + +  + +  +  +

7*G(5#) =      42                   28             14           28            14            28                     42           14
Elementwise product for running sums between fusions

R1.  pk+1 = 6+1 = 7
 R2.  7 copies of G(5#)

R3. Fusions

G(7#)= 10 2 4 2 4 6 2  6 4 2 4 6 6 2  6 4 2 6 4 6 8 4 2 4 2 4 8  6 4 6 2 4 6 2  6 6 4 2 4 6 2  6 4 2 4 2 10 2

https://www.primegaps.info/
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Let’s take a closer look at step R3 of the recursion.  
We stay with the example of producing G(7#) from G(5#).

i. The first fusion is after the first gap, where we have marked pk+1 (here 7) as the next prime.

ii. We reset our running sum to 0 at this marker + and add up the gaps in step R2 until we reach the total 7*6=42.   
We reach this total with the gaps 4 2 4 2 4 6 2  6 4 2 4 2. So our second fusion occurs after this gap 2.

iii. We reset our running sum to 0 at this new marker + and add up the gaps in step R2 until we reach the total 
7*4=28. We reach this total with the gaps 4 6 2  6 4 2 4. And our third fusion occurs after this gap 4.

Continue for the rest of the running sums provided by 7*G(5#).  Note that the last running sum wraps around the end 
of the cycle back to the first fusion.  It had better align this way!  These are cycles after all.

pk=5 and G(5#) = 6 4 2 4 2 4 6 2

6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2
+ + + +  + +  +  +

7*G(5#) :    7*6 = 42           7*4 = 28    7*2 =14    7*4 = 28   7*2 =14     7*4 = 28            7*6 = 42          7*2 =14
Elementwise product for running sums between fusions

R1.  pk+1 = 6+1 = 7
 R2.  7 copies of G(5#)

G(7#)= 10 2 4 2 4 6 2  6 4 2 4 6 6 2  6 4 2 6 4 6 8 4 2 4 2 4 8  6 4 6 2 4 6 2  6 6 4 2 4 6 2  6 4 2 4 2 10 2

R3. Fusions

The fusions occur where we have marked the next prime pk+1 and crossed its multiples off the list 
of candidate primes.

Check these sums

Fusion 
#1

Fusion 
#3

Fusion 
#2

… etc. …

7
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The cycle of gaps G(p#) has length f(p#) gaps and span p#.
These values grow very quickly.

Exercises: 
3. Use software to create the cycles G(p#)

4. What is the largest complete cycle G(p#) you can create?  

p f(p#) p#
prime Length of G(p#)

#gaps
Span of G(p#)
Sum of gaps

2 1 2
 3 2 6
 5 8 30
 7 48 210
 11 480 2310
 13 5760 30030
 17 92160 510510
 19 1658880 9699690
 23 36495360 223092870
 29 1021870080 6469693230
 31 30656102400 200560490130

f(n) is Euler’s phi-function.  

For primorials p#

f(p#) = Pq ≤ p(q-1)

Where the product is over all primes 
up to and including p.

8
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4. Two observations

We make two very useful observations about the recursive construction of G(pk+1#)

Observation 1.  The minimum distance between fusions in step R3 is 2pk+1. 
The fusions are separated by the running sums  pk+1*G(pk), and the smallest gap 
in G(pk) is g=2.  So the smallest running sum is 2pk+1.

Observation 2.  Each possible fusion in G(pk#) occurs exactly once in step R3 
of creating G(pk+1).

This is a result of the Chinese Remainder Theorem.

Recursion   G(pk#) → G(pk+1#)

R1.  The next prime pk+1 = g1+1

R2.  Concatenate pk+1 copies of G(pk #)

R3.  Add together adjacent gaps using the 
elementwise product pk+1*G(pk#)

9
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From these two observations we derive an important lemma 
for building our population models for gaps.  

Exercises:    
1. Verify Observation 1 for the eight running sums in the construction from G(5#) to G(7#). 

2. Verify Observation 2 for the eight fusions in the construction from G(5#) to G(7#). 

pk=5 and G(5#) = 6 4 2 4 2 4 6 2

6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2  6 4 2 4 2 4 6 2+ + + +  + +  +  +

7*G(5#) =      42                   28             14           28            14            28                     42           14
Elementwise product for running sums between fusions

R1.  pk+1 = 6+1 = 7
 R2.  7 copies of G(5#)

G(7#)= 10 2 4 2 4 6 2  6 4 2 4 6 6 2  6 4 2 6 4 6 8 4 2 4 2 4 8  6 4 6 2 4 6 2  6 6 4 2 4 6 2  6 4 2 4 2 10 2

R3. Fusions

10
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Lemma.  Let s be a constellation of gaps in G(pk#) of length J.  

If the span of s is less than 2pk+1, then each of the J+1 possible fusions in s occurs 

exactly once in forming G(pk+1#), and these fusions occur in J+1 distinct images of s. 

Thus pk+1-J-1 images of s survive into G(pk+1#) intact.

A constellation is a sequence of consecutive gaps in G(p#).  

The length of a constellation is the number of gaps in the constellation, and the span of 
a constellation is the sum of the gaps in the constellation.
A gap is a constellation of length 1.

G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

11
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5. The number of gaps g=2 in G(p#)

With that lemma, we can exactly model the number of gaps g=2 that occur in the 
cycles of gaps G(p#) across the stages of Eratosthenes sieve.

Let n2(p#) be the number of gaps g=2 in the cycle G(p#).  We see that

G(3#) = 4 2
G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

n2(3#) = 1.

 n2(5#) = 3.

 n2(7#) = 15.

By the Lemma, the gap g=2 is a constellation of length J=1, and g < 2pk+1 for all pk > 2.  

So the factor p-J-1 = p-2  and  n2(pk+1#) = (pk+1 – 2) n2(pk#).  

Starting from p0=3, we have

 n2(p#) = P3≤q ≤ p (q-2)

n2(p#) is an exact count of the number of gaps g=2 in the cycle G(p#).
Although we are very limited in the cycles G(p#) that we can explicitly construct, 

we can calculate this population n2(p#) for cycles for very large primes.

12
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Exercises:  
1. Calculate the number of gaps g=2 and g=4 in the cycle G(89#)
2. Calculate the number of gaps g=2 and g=4 in the cycle G(499#)

5 (cont’d). The number of gaps g=4 in G(p#)

Similarly let n4(p#) be the number of gaps g=4 in the cycle G(p#).  We see that

G(3#) = 4 2
G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

n4(3#) = 1.

 n4(5#) = 3.

 n4(7#) = 15.

By the Lemma, the gap g=4 is a constellation of length J=1, and g < 2pk+1 for all pk > 2.  

So n4(pk+1#) = (pk+1 – 2) n4(pk#).  

Starting from p0=3, we have

The number of gaps g=4 is the same as the number of gaps g=2 across all stages 

of Eratosthenes sieve for p ≥ 3. 

n4(p#) = n2(p#)  for p ≥ 3

You may need to use logarithms.

13

n4(p#) = P3≤q ≤ p (q-2)
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6. Driving terms : the number of gaps g=6 in G(p#) 
For the gap g=6 the population model gets more interesting.
The gap g=6 satisfies the condition g < 2pk+1 for pk ≥ 3.  

Under fusions, gaps g=6 are created by replication with the factor (p-2), but they 
are also created by the interior fusions to the constellations s= 2 4 and s = 4 2.

G(3#) = 4 2

G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

We start a table

These constellations s= 2 4 and s = 4 2 are the driving terms of length 2 for the gap g=6.

We extend the notation ng, j(p#) to mean the number of driving terms for the gap g of 
length j in the cycle G(p#).  ng, 1(p#) is the population of the gap g itself.

From our lemma, the population of gaps g=6 is given by the system
 n6,1(pk+1#)  =  (pk+1 – 2) n6,1(pk#)  + n6,2(pk#)
n6,2(pk+1#)  =  (pk+1 – 3) n6,2(pk#)

p n6,1(p#)
3 0 2 1

 5 2 4 3
 7 14 16 15
 11 142 128 135
 13 1690 1280 1485

n6,2(p#) n2(p#)

14
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We can rewrite the model for the population of the gap g=6 in G(p#) as a linear 
system

𝑛!,#
𝑛!,$ (𝑝%&##) =

𝑝%&# − 2 1
0 𝑝%&# − 3

𝑛!,#
𝑛!,$ (𝑝%#)

Exercises:  

1. Calculate the number of gaps g=6 in the cycle G(89#)

2. Calculate the number of gaps g=6 in the cycle G(199#)

3. What percentages of the cycle G(199#) are the gaps g=2, g=4, and g=6?

15
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7. The number of gaps g=8 in G(p#)

G(3#) = 4 2

G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

For the gap g=8, we have driving terms of length j=2:  s= 6 2 and s= 2 6;
and this gap has driving terms of length j=3:  s= 2 4 2.

At each stage of Eratosthenes sieve, 
the interior fusions in s=6 2 and s=2 6 produce new gaps g=8; 

and each of the two interior fusions in s= 2 4 2 produce driving terms for g=8 of 
length j=2, either s=2 6 or s=6 2.

16

The gap g=8 satisfies the condition g < 2pk+1 for pk ≥ 3, although the gap itself 
doesn’t appear until G(7#). 

8
2 6

6 2
2 4 2
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G(3#) = 4 2

G(5#) = 6 4 2 4 2 4 6 2

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

We can write the population model for the gap g=8 in G(p#) as this linear system
𝑛!,#
𝑛!,$
𝑛!,%

𝑝&'## =	
𝑝&'# − 2 1 0

0 𝑝&'# − 3 2
0 0 𝑝&'# − 4

𝑛!,#
𝑛!,$
𝑛!,%

(𝑝&#)

To use this model we just need the initial counts in some G(p0#) such that 8 < 2p1.
We can use any p0 ≥ 3. 

p n8,1(p#)
3 0 0 1

 5 0 2 1
 7 2 10 3
 11 28 86 21
 13 394 902 189

n8,2(p#) n8,3(p#)

Exercises:  
1. Identify the driving terms for g=8 in G(3#)
2. Identify the driving terms for g=8 in G(5#)
3. Track the driving terms, under fusions, from G(5#) into G(7#)

Remember that the G(p#) are 
cycles.  The end wraps around 
to the beginning.

17
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The population of every gap grows predominantly by factors of (p-2).  
This is super-exponential growth, which quickly becomes unmanageable.

We normalize the population models by dividing by this factor of (p-2) at every stage.  
The resulting population models are the relative populations of the gaps.  

We denote the relative population of driving terms for gap g of length j in G(p#) by wg,j(p#). 

n2(pk+1#) = (pk+1-2) n2(pk#) = P3≤q ≤ p (q-2)

𝑛!,#
𝑛!,$
𝑛!,%

𝑝&'## =	
𝑝&'# − 2 1 0

0 𝑝&'# − 3 2
0 0 𝑝&'# − 4

𝑛!,#
𝑛!,$
𝑛!,%

(𝑝&#)

w2(pk+1#) = w2(pk#) = 1

n4(pk+1#) = (pk+1-2) n4(pk#) = P3≤q ≤ p (q-2) w4(pk+1#) = w4(pk#) = 1

Population in G(p#) Relative population in G(p#)

𝑛!,#
𝑛!,$ (𝑝%&##) =

𝑝%&# − 2 1
0 𝑝%&# − 3

𝑛!,#
𝑛!,$ (𝑝%#)

𝑤!,#
𝑤!,$ (𝑝%&##) =

1
1

𝑝%&# − 2

0
𝑝%&# − 3
𝑝%&# − 2

𝑤!,#
𝑤!,$ (𝑝%#)

𝑤!,#
𝑤!,$
𝑤!,%

𝑝&'## =	

1
1

𝑝&'# − 2
0

0
𝑝&'# − 3
𝑝&'# − 2

2
𝑝&'# − 2

0 0
𝑝&'# − 4
𝑝&'# − 2

𝑤!,#
𝑤!,$
𝑤!,%

(𝑝&#)

g=2

g=4

g=6

g=8

18
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We can interpret the relative population for a gap g as the ratio of populations of 
gaps g to gaps 2 in G(p#):   wg,1(p#) =  ng,1(p#) / n2(p#)

The relative population models wg,j(p#) are still exact, and the values are more 
manageable.

p w2 (p#)
3 1 1 0. 0.

 5 1 1 0.666667 0.
 7 1 1 0.933333 0.133333
 11 1 1 1.051852 0.207407
 13 1 1 1.138047 0.265320
 17 1 1 1.195511 0.305814
 19 1 1 1.242834 0.340160
 …
 199 1 1 1.549497 0.583563
 499 1 1 1.611811 0.637093
 997 1 1 1.649362 0.669986
 2503 1 1 1.690123 0.706229
 4999 1 1 1.715031 0.728652
 10007 1 1 1.736414 0.748067
 49999 1 1 1.775411 0.783871
 100003 1 1 1.788920 0.796393
 500009 1 1 1.814773 0.820527
 1000003 1 1 1.824052 0.829245
 4999999 1 1 1.842411 0.846576
 9999991 1 1 1.849183 0.852998
 15250009 1 1 1.853031 0.856654

w6,1 (p#) w8,1 (p#)w4 (p#)

By comparison,
 n2(15250009#) ≈ 6.178╳106620813

YIKES !!
19
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9. Easier and easier calculations -- eigenstructure

The models wg,j(p#) for the exact relative populations of the gap g and its driving 
terms simplify in three ways.

A. The models have simple eigenstructures.
The eigenstructure provides a basis of right eigenvectors R that isolate the 
scalings of a matrix along these directions.  The scalings are given by the 
eigenvalues L, and the left eigenvectors L act as filters to extract the coefficients 
for a vector in the basis R.  RL = LR = I.

1
1

𝑞 − 2 0

0
𝑞 − 3
𝑞 − 2

2
𝑞 − 2

0 0
𝑞 − 4
𝑞 − 2

	= 	 𝑅	Λ	𝐿	 =
1 −1 1
0 1 −2
0 0 1

1 0 0

0
𝑞 − 3
𝑞 − 2

0

0 0
𝑞 − 4
𝑞 − 2

	
1 1 1
0 1 2
0 0 1

	Here’s the 
eigenstructure

For our models of the relative populations wg,j(p#), the eigenvectors R and L do 
not change with the prime p.  So the model ‘telescopes’ and we can more easily 
calculate values for large primes.

20
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2
((

()

1
1

𝑞 − 2
0

0
𝑞 − 3
𝑞 − 2

2
𝑞 − 2

0 0
𝑞 − 4
𝑞 − 2

	= 	 𝑅	Λ𝑘	𝐿	 =
1 −1 1
0 1 −2
0 0 1

1 0 0

0 2
((

() 𝑞 − 3
𝑞 − 2

0

0 0 2
((

() 𝑞 − 4
𝑞 − 2

	
1 1 1
0 1 2
0 0 1

	

Here’s the telescoping product

21

From the simple eigenstructure, we can isolate the top row to extract exact models of the 
relative populations for a gap g with g  < 2p1.  In the cycle G(p0#) the gap g itself may not 
appear, but it will have driving terms up to some length J.  Then

𝑤3,# 𝑝𝑘# = 𝑙# −	𝑙$0
4)

4* 𝑞 − 3
𝑞 − 2 + 𝑙50

4)

4* 𝑞 − 4
𝑞 − 2	−	…+ (−1)

6&#𝑙60
4)

4* 𝑞 − 𝐽 − 1
𝑞 − 2

Where the coefficients are given by
𝑙#
⋮
𝑙6

= 𝐿	𝑤3(𝑝7#)    and   𝑤3,8 𝑝7# =
9+,,(4-#)
9.(4-#)

=
9+,,(4-#)
∏/
0-(;<$)
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For example, to compute the relative population of the gap g=8 in G(15485863#), 
instead of computing one million 3x3 matrix multiplications, we calculate

2
123

#45!4!6%
𝑞 − 3
𝑞 − 2 = 0.1101249	 2

123

#45!4!6%
𝑞 − 4
𝑞 − 2 = 0.0108483

We have the initial conditions w8,1(5#) = 0/3;  w8,2(5#)= 2/3; w8,3(5#) = 1/3.  
And

𝑤! 15485863# = 𝑅	Λ𝑘	𝐿
0
2/3
1/3

=

1	 − 5
%
	0.1101249 + #

%
0.0108483

5
%
	0.1101249	 − $

%
	0.0108483

#
%
	0.0108483

 

The top row provides the model of the relative population for the gap g=8 itself

𝑤=,# 𝑝𝑘# = 1	 −
4
30

4)

4* 𝑞 − 3
𝑞 − 2 +

1
30

4)

4* 𝑞 − 4
𝑞 − 2
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Exercise.  Using G(5#), determine the model for the relative population
 of the gap g=10.
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𝑤7,# 𝑝𝑘# = 𝑙# −	𝑙$2
((

() 𝑞 − 3
𝑞 − 2

+ 𝑙%2
((

() 𝑞 − 4
𝑞 − 2

	−	…+ (−1)8'#𝑙82
((

() 𝑞 − 𝐽 − 1
𝑞 − 2

B. The parameters for these models are almost polynomial.
We denote the first parameter in the model as l

𝜆 =2
((

() 𝑞 − 3
𝑞 − 2

Then the other parameters are approximately powers of l,

0
4)

4* 𝑞 − 𝑗 − 1
𝑞 − 2 	≈ 	𝜆8<#

 and the models are approximately polynomial
𝑤7,# 𝑝𝑘# ≈ 𝑙# −	𝑙$𝜆 + 𝑙%𝜆$ 	−	…+ (−1)8'#𝑙8𝜆89#

Exercise.  Using the models for g=8 and g=10, analyze the error between the 
exact model for the relative population and the polynomial approximation.
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𝑤3,# 𝑝𝑘# ≈ 𝑙# −	𝑙$𝜆 + 𝑙5𝜆$ 	−	…+ (−1)6&#𝑙6𝜆6<#  with 𝜆 = ∏4)
4* ;<5

;<$

We can explore these models in the parameter l and then tie the parameter l to the 
prime pk.  We could tabulate the correspondence 𝜆 ↔	𝑝% up through a few million 
primes but how do we estimate this correspondence for very large primes?

C. Merten’s Third Theorem
Franz Merten’s third theorem from 1874 provides the approximation

2
$

() 𝑞 − 1
𝑞 	≈

𝑒9:

ln 𝑝&

We can use this approximation to associate really large primes with a correspondingly 
small value of l.

𝜆 = 	2
((

() 𝑞 − 3
𝑞 − 2

	≈2
((

() 𝑞 − 1
𝑞

	≈	 𝐶
𝑒9:

ln 𝑝&

Where the constant C adjusts for the product from 2 through p0 and also for the 
quality of the approximation  ;<5;<$ 	≈

;<#
;   for small primes.

For p0=5 we estimate 
C = 3.24719

Exercises:  
 3. Estimate a good value of C when p0 = 5.
 4. Suppose l= l1 corresponds to a prime p.  Show that if we want to 

reduce l by half, to 𝜆 = >)
$ , we have to use primes q near p2.

24
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Now we have models wg,1(l) that are approximately polynomial in the parameter l, 
and we have a map from l to pk that enables us to use the models for primes well 
beyond the computational range.

𝜆 → 0	 as	 𝑝% → ∞
For p0=5, we have the following models.

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Models from G(5#)

g=2, g=4

g=6

g=8

g=10

g=12

p=5
p=9011

p→∞  

p≈8.3 E7
p ≈ 6.9 E15

p ≈ 4.7 E31

p=31p=1447

l
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10. Surviving the sieve
The gaps at the front of the cycle G(pk#) survive to be confirmed as gaps among primes.  
Every gap from 𝑝%&# to 𝑝%&#$ will survive the further stages of the sieve.

In this interval 𝑝%&#, 𝑝%&#$  all of the gaps up to 𝑝%$ were confirmed in the previous stage 
of the sieve.  So the new interval of survival of gaps confirmed by G(pk#) is 𝑝%$, 𝑝%&#$ .  

We expect the gaps among the primes in this interval 𝑝&$, 𝑝&'#$  to be statistically 
consistent with the ratios w2(pk#), w4(pk#), …, wg(pk#).

G(7#)= 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2+ + ++ + …
horizon of survival for p=7Next prime 

p1=11
121 143 187 209

G(11#)= 12 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 14 4 6 2 10 2 6 6 4 2 4 6 2 10 2 4 2 12 10 2 4+ + + ……
horizon of survival for p=11

Next prime 
p2=13

169 22114 4 6 2 10 2 6 6 4
Interval of survival [p1

2, p2
2] for p=11

G(13#)= 16 4 2 . . . 2 4 14 4 6 2 10 2 6 6 4 6 6 2 10 2 4 2 12 12 4 2 4 6 2 10 6 6 6 2 6 4 2 6 4 14 4 2 4+ + ……
horizon of survival for p=13

Next prime 
p3=17

289
6 6 2 10 2 4 2 12 12 4 2 4 6 2 10 6 6 6 2 6 4 2

Interval of survival for p=13
[p2

2, p3
2]

This interval contains the gaps newly confirmed 
as gaps between primes at this stage of the sieve.
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Primes pk gap pk
2 g=2 4 6 8 10 12

1427 2036329
1429 2 2042041 33 34 56 24 28 37 212
1433 4 2053489 71 73 111 51 70 70 446
1439 6 2070721 115 108 189 74 113 123 722
1447 8 2093809 147 142 235 104 131 137 896
1451 4 2105401 56 59 128 57 73 74 447
1453 2 2111209 36 37 64 29 31 39 236
1459 6 2128681 103 111 196 80 87 111 688
1471 12 2163841 229 211 385 161 209 235 1430

790 775 1364 580 742 826 5077
wg(l=.25) 1 1 1.6667 0.6875 0.875 1.03125

The interval of survival of gaps confirmed by G(pk#) is 𝑝%$, 𝑝%&#$ .  

We expect the gaps among the primes in this interval 𝑝%$, 𝑝%&#$  to be statistically 
consistent with the ratios w2(pk#), w4(pk#), …, wg(pk#).

As an example, for 𝜆 ≈ 0.25 we tabulate the populations of gaps 2 ≤ 𝑔 ≤ 12 in a 
series of intervals of survival 𝑝%$, 𝑝%&#$  for some of the pk corresponding to 𝜆 ≈ 0.25. 

Of the 8761 prime gaps between 14272 = 2036329 and 14712 = 2163841, 
5077 are counted in the table above.
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Here we plot the data tabulated above.  Each column represents the counts of the 
gaps in the intervals of survival, and these are color-coded by the gap 
g = pk+1 - pk for the interval of survival 𝑝&$, 𝑝&'#$ .

The diamonds mark the relative populations 
for these gaps in G(p#) at l=0.25, with p0=5.

0

200

400

600

800

1000

1200

1400

2 4 6 8 10 12

Populations of small gaps 
in intervals of survival near l=0.25

p=1471

p=1459

p=1453

p=1451

p=1447

p=1439

p=1433

p=1429

g=2
g=4
g=6

g=8

g=2
g=4

g=6

g=12

Let g = pk+1- pk.
Then the length of the interval [pk

2,p2
k+1] is p2

k+1 - pk
2 = (pk+g)2 - pk

2

 = g(2pk+g)
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With the condition g < 2p1 
If we use p0 = 5 we can use the initial conditions in G(5#) to calculate 
the relative population models wg(l) for gaps up to g=12.
If we use p0 = 7 we can use the initial conditions in G(7#) to calculate 
the relative population models for gaps up to g=20.

Exercises

1. What is the largest prime p0 for which you could create the complete 
cycle G(p0#), i.e. for Exercise 4 in Section 3?  With this cycle, for what 
range of gaps g can you calculate the relative population models?

2. For this p0 calculate the initial conditions for gaps g < 2p1 , and the 
models for the relative populations of these gaps.

3. For the gaps g=6 and g=8, how do the models with p0=5 compare to the 
models for this larger p0?  The models are all exact, so how do we 
reconcile the variations in the models for different choices of p0?

29

https://www.primegaps.info/


Patterns among the Primes
Fred B. Holt
https://www.primegaps.info 30

F.B. Holt, Patterns among the Primes, KDP 2022.

https://primegaps.info 

https://www.primegaps.info/
https://primegaps.info/

