# All admissible k-tuples arise and persist in Eratosthenes sieve

Joint Mathematics Meetings 2025 Seattle, WA

Fred B. Holt

https://www.primegaps.info

Patterns among the Primes

Eratosthenes sieve as a discrete dynamic system

### Conjectures about constellations between primes

#### *k*-tuple conjecture (1923)

Every admissible constellation occurs infinitely often as a constellation of gaps between primes.

#### Hardy & Littlewood estimate (1923)

Every admissible constellation occurs infinitely often as a constellation of gaps between primes, with relative frequency of occurrence of

$$\prod_{p>2} \left(\frac{p}{p-1}\right)^J \frac{p-\nu}{p-1}$$

#### Polignac's conjecture (1849)

For every even number 2n, the gap g=2n occurs infinitely often as a gap between primes.

#### Twin prime conjecture

The gap g=2 occurs infinitely often as a gap between primes.

#### Hardy & Littlewood estimate (1923)

\*citing Sylvester (1871)

For every even number 2n, the gap g=2n occurs infinitely often as a gap between primes, with relative frequency of occurrence of

$$\prod_{\text{odd } p \mid g} \frac{p-1}{p-2}$$

Patterns among the Primes Fred B. Holt

# **Theorem**:

All admissible instances of every admissible constellation occur in Eratosthenes sieve.

# Context from Patterns among the Primes

Eratosthenes sieve

After confirming p=5:



6

1 2

}

6

2

Cycles of gaps

$$G(5^{\#}) = 64242462$$

Recursion

 $G(p^{\#})$  has length  $\phi(p^{\#})$  and span  $p^{\#}$ .

Polignac (1849)

# Context from Patterns among the Primes

Eratosthenes sieve

After confirming p=5:

Remaining candidate primes or "5-rough" numbers

1 2 3 5 7 7 11 1 13 1 3 5 1 17 1 19 2 1 2 1 2 2 3 2 4 2 5 2 5 2 5 2 9 2 1 31 2 2 3 ...

Unit Confirmed primes

Cycles of gaps

$$G(5^{\#}) = 64242462$$

 $\mathcal{G}(p^{\#})$  has length  $\phi(p^{\#})$  and span  $p^{\#}$ .

Recursion  $\mathcal{G}(p_k^{\#}) \longrightarrow \mathcal{G}(p_{k+1}^{\#})$ 

For  $p_k$  we have the cycle of gaps  $\mathcal{G}(p_k^{\#}) = g_1 g_2 g_3 \dots g_N$ 

- **R1.** The next prime  $p_{k+1} = g_1 + 1$
- **R2.** Concatenate  $p_{k+1}$  copies of  $\mathcal{G}(p_k^{\#})$
- **R3.** Fusions: Add together the gaps  $g_1+g_2$  and thereafter add adjacent gaps at the running sums indicated by the elementwise product  $p_{k+1}*G(p_k^\#)$

Patterns among the Primes Fred B. Holt

# Constellations of gaps

A *constellation* of gaps of length *J* is a sequence of *J* consecutive gaps.

There is a natural correspondence between constellations of length J and k-tuples with k = J+1.

An *instance* of a constellation s is fixed by identifying  $\gamma_0$ . The remaining generators are

$$\gamma_j = \gamma_{j-1} + g_j$$

An instance  $\gamma_0$  of s is **admissible** for the prime p iff  $\gamma_j \mod p \neq 0$  for all j=0,...,J

## Admissible constellations

For a prime p and a constellation s, we define

 $\nu_p$  to be the <u>number</u> of distinct residues mod p covered by any k-tuple corresponding to s.

A constellation s is **admissible for a prime p** iff  $v_p < p$ .

| p | s = 2,10,2,10,2 | $\gamma_i \mod p$ | admissible $\gamma_0 \mod p$ |
|---|-----------------|-------------------|------------------------------|
| 3 | $v_3 = 2$       | {0, 2}            | 2                            |
| 5 | $v_5 = 4$       | {0,1,2,4}         | 2                            |
| 7 | $v_7 = 4$       | {0,2,3,5}         | 1,3,6                        |

Lemma: There are p- $v_p$  values of  $\gamma_0 \mod p$  for admissible instances of s.

A constellation s is **admissible** iff s is admissible for all primes p.

# $W_{S,J}(\infty)$ : asymptotic relative populations

The population of 
$$s$$
 in  $\mathcal{G}(p^{\#})$  is 
$$n_{s,J}(p^{\#}) = w_{s,J}(p^{\#}) \cdot \prod_{J+1 < q \le p} (q-J-1)$$

#### *Theorem*:

Let s be an admissible constellation of length J, and let Q be the product of the odd primes that divide a span between boundary fusions in s.

Then the asymptotic relative population of s in  $\mathcal{G}(p^{\#})$  is

$$w_{s,J}(\infty) = \prod_{q \le J+1} (q - \nu_q) \cdot \prod_{q > J+1, \ q \mid Q} \frac{q - \nu_q}{q - J - 1}$$

# Consecutive Primes in Arithmetic Progression

#### <u>Corollary:</u>

Let s be an <u>admissible repetition</u> of the gap g of length J, and let  $Q = \prod_{\text{odd } g \mid g} q$ .

Then the asymptotic relative population of s in  $\mathcal{G}(p^{\#})$  is

$$w_{s,J}(\infty) = \frac{\phi(Q)}{\prod_{q|Q}(q-J-1)}$$

# An illustrative example to outline the proof

 $v_p$  is the number of distinct residues mod p covered by any k-tuple corresponding to s.

| p | s = 2,10,2,10,2           | $\gamma_i$ mod $p$ | admissible $\gamma_0$ |
|---|---------------------------|--------------------|-----------------------|
| 3 | $v_3 = 2$                 | {0, 2}             | 2                     |
| 5 | <i>v</i> <sub>5</sub> = 4 | {0,1,2,4}          | 2                     |
| 7 | v <sub>7</sub> =4         | {0,2,3,5}          | <i>1,3,6</i>          |

$$G(5^{\#})$$
 6 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2  $\gamma_0 = 17$ 

Driving term for s

Patterns among the Primes

https://www.primegaps.info

Fred B. Holt

# *Illustrative example*

Fred B. Holt

https://www.primegaps.info

 $v_p$  is the number of distinct residues mod p covered by any k-tuple corresponding to s.

|                   |                                 | <b>p</b> 3 5 | s = 2,10,2,10,2<br>$v_3 = 2$<br>$v_5 = 4$<br>$v_7 = 4$ | γ <sub>i</sub> mod <i>p</i><br>{0, 2}<br>{0,1,2,4}<br>{0,2,3,5}       | admissible γ <sub>0</sub> 2 2 <b>1,3,6</b> |
|-------------------|---------------------------------|--------------|--------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|
|                   | <i>G</i> (5 <sup>#</sup> )      | ,            | 6424 <b>2462 6</b> 4<br>γ <sub>0</sub> =17             |                                                                       | Driving term for s                         |
|                   | $G(7^{\#})$ $5^{\#} = 2 \mod 7$ |              |                                                        | 2462642<br>2462642                                                    |                                            |
|                   | R2                              | γ            | $_{0}+2.5^{\#}=0 \mod 7$<br>$_{0}+3.5^{\#}=2 \mod 7$   | 2 4 6 2 <sub>+</sub> 6 4 2<br>2 4 6 <sub>+</sub> 2 6 4 2 <sub>+</sub> | R3                                         |
| Patterns among th | replication ne Primes           | γ            | 0+5·5 <sup>#</sup> = 6 mod 7                           | <del>246264</del> 2<br>2462642<br>24626 <u>4</u> 2 <b>-</b>           | <i>fusions</i> → 2 10 2 10 2               |

#### Admissible instances

| p  | s = 2,10,2,10,2 | $\gamma_i$ mod $p$ | admissible $\gamma_0$ |
|----|-----------------|--------------------|-----------------------|
| 7  | $v_7 = 4$       | {0,2,3,5}          | 1,3,6                 |
| 11 | $v_{11} = 5$    | {0,1,2,3,4}        | 1,2,3,4,5,6           |

Driving terms + 0.7# 2 10

 $G(11^{\#})$ 

 $7^{\#} = 1 \mod 11$ 

Patterns among the Primes Fred B. Holt https://www.primegaps.info

Driving terms 2,10,2,10,2 2462,10,2 2462642

#### Admissible instances

| p  | s = 2,10,2,10,2    | $\gamma_i \mod p$ | admissible $\gamma_0$ |
|----|--------------------|-------------------|-----------------------|
| 7  | v <sub>7</sub> = 4 | {0,2,3,5}         | 1,3,6                 |
| 11 | $v_{11} = 5$       | {0,1,2,3,4}       | 1,2,3,4,5,6           |

$$\mathcal{G}(7^{\#}) \qquad \begin{array}{c} \gamma_0 + 0.5^{\#} = 3 \mod 7 \\ = 6 \mod 11 \\ 2462642 \end{array} \qquad \begin{array}{c} \gamma_0 + 5.5^{\#} = 6 \mod 7 \\ = 2 \mod 11 \\ 2462642 \end{array} \qquad \begin{array}{c} \gamma_0 + 6.5^{\#} = 1 \mod 7 \\ = 2 \mod 11 \\ 2462642 \end{array} \qquad \begin{array}{c} = 10 \mod 11 \\ 2102 \mod 2 \end{array}$$

Patterns among the Primes Fred B. Holt

https://www.primegaps.info

Driving terms 2,10,2,10,2 2462,10,2 2462642

#### Admissible instances



Patterns among the Primes Fred B. Holt

#### Generalizing, we can prove --



<u>Lemma</u>: For an admissible constellation s, let  $\gamma_0$  be an admissible instance of s in  $\mathcal{G}(p_0^\#)$ .

For **every** admissible instance of s in  $\mathcal{G}(p_k^{\#})$ ,

$$\gamma_0 + m_1 p_0^{\#} + m_2 p_1^{\#} \dots + m_k p_{k-1}^{\#}$$

there are  $(p_{k+1} - v_p)$  choices of  $m_{k+1}$  such that

$$\gamma_0 + m_1 p_0^{\#} + m_2 p_1^{\#} \dots + m_k p_{k-1}^{\#} + m_{k+1} p_k^{\#}$$

is an admissible instance of s in  $\mathcal{G}(p_{k+1}^{\#})$ ,

and these have distinct residues mod  $p_{k+1}^{\#}$ .

Patterns among the Primes Fred B. Holt

# The relative populations $w_{s,J}(p^{\#})$ in $\mathcal{G}(p^{\#})$ support the k-tuple conjecture

#### *k*-tuple conjecture (1923)

Every admissible constellation occurs infinitely often as a constellation of gaps between primes.

#### Hardy & Littlewood estimate (1923)

Every admissible constellation occurs infinitely often as a constellation of gaps between primes, with relative frequency of occurrence of

$$\prod_{p>2} \left(\frac{p}{p-1}\right)^J \frac{p-\nu}{p-1}$$

<u>Theorem</u>: Every admissible constellation s of length J arises and persists in  $\mathcal{G}(p^{\#})$ , with asymptotic relative population

$$w_{s,J}(\infty) = \prod_{q \le J+1} (q - \nu_q) \cdot \prod_{q \mid Q, q > J+1} \frac{q - \nu_q}{q - J - 1}$$

Patterns among the Primes Fred B. Holt

